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Maximum Likelihood Estimation

1. Given a dataset D = {(xn, yn)}N
n=1 with xn ∈ RD, assume the generative model yn =

w⊤xn + ϵn where ϵn ∼ N (0, σ2) independently. Write down the log-likelihood ℓ(w) =
log p(y | w, X) and find ∇wℓ(w) = 0 to derive the MLE w∗.

2. Let ŵ = (X⊤X)−1X⊤y be the least squares estimator. The true data is generated as
y = Xw∗ + ϵ where ϵ ∼ N (0, σ2I). Prove that E[ŵ] = w∗ by substituting the generative
model into the estimator.

3. For a dataset with X ∈ R3×2 and y ∈ R3:

X =

1 2
3 1
2 4

 , y =

 5
8
11


Compute the ridge regression solution w∗

λ = (X⊤X +λI)−1X⊤y for λ = 1. Use Cholesky
decomposition to solve the system numerically.

4. Starting from the regularized loss L(w) = 1
2∥y − Xw∥2

2 + λ
2 ∥w∥2

2, show that this is
equivalent to the negative log posterior (up to constants):

− log p(w | y, X) = − log p(y | w, X) − log p(w)

with Gaussian likelihood N (y | Xw, σ2I) and prior p(w) = N (w | 0, τ2I). What is λ in
terms of σ2 and τ2?

Bayesian Linear Regression

1. Given:

• Prior: p(w) = N (w | 0, σ2
wI)
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• Likelihood: p(y | w, X) = N (y | Xw, σ2
yI)

Show that the posterior is Gaussian by computing the exponent of p(y | w, X)p(w)
and identifying the posterior precision matrix Σ−1 = 1

σ2
y
X⊤X + 1

σ2
w

I and mean µ =

Σ
(

1
σ2

y
X⊤y

)
.

2. For a new input x∗ and posterior p(w | y, X) = N (w | µ, Σ), the predictive distribution
is obtained by marginalizing:

p(y∗ | x∗, y, X) =
∫

N (y∗ | w⊤x∗, σ2
y)N (w | µ, Σ) dw

Show that this equals N (y∗ | µ⊤x∗, x⊤
∗ Σx∗ + σ2

y) using the property that the convolution
of two Gaussians is Gaussian.

3. Consider 1D Bayesian linear regression with:

• Prior: p(w) = N (w | 0, 1)
• Single observation: (x, y) = (1, 2) with noise variance σ2

y = 1

Compute the posterior mean µ and variance σ2 using the formulas σ2 =
(

1
σ2

y
x2 + 1

σ2
w

)−1

and µ = σ2 1
σ2

y
xy. Then predict the distribution of y∗ = f(x∗ = 2).

4. For a dataset with two observations (x1, y1) = (1, 1) and (x2, y2) = (2, 3), and:

• Prior: p(w) = N (w | 0, 2)
• Noise variance: σ2

y = 0.5

Construct the matrices X, y and compute the posterior covariance Σ =
(

1
σ2

y
X⊤X + 1

2

)−1

and posterior mean. Make a prediction at x∗ = 3.

Model Selection

1. Suppose two models M1 (linear) and M2 (polynomial degree 5) are fit to data. Model
M2 always achieves a higher likelihood p(y | ŵ2, X, M2) > p(y | ŵ1, X, M1) on the
training set. However, Bayesian model selection chooses M1. Explain why the marginal
likelihood p(y | X, M) (which marginalizes over parameters) provides a better criterion
than the marginal likelihood of the best-fit parameters.

2. Consider two models for the observed data y:

• M1: Likelihood p(y | w, X, M1) = N (y | Xw, 0.12I) with prior p(w) = N (w |
0, 100I)
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• M2: Likelihood p(y | w, X, M2) = N (y | Xw, 12I) with prior p(w) = N (w |
0, 100I)

Which model assigns higher marginal likelihood to a large-variance dataset? (Hint: the
marginal likelihood for a Gaussian regression is p(y | X, M) = N (y | 0, XΣpX⊤ + σ2I)
where Σp is the prior covariance.)
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