Linear Regression

Advanced Statistical Inference

Simone Rossi

Maximum Likelihood Estimation

1. Given a dataset D = {(zn, yn)}_; with @, € RP, assume the generative model y, =
w'x, + €, where €, ~ N(0,0?) independently. Write down the log-likelihood £(w) =
log p(y | w, X) and find V,¢(w) = 0 to derive the MLE w*.

2. Let @ = (X " X)"'X Ty be the least squares estimator. The true data is generated as
y = Xw* + € where € ~ N(0,02I). Prove that E[@w] = w* by substituting the generative
model into the estimator.

3. For a dataset with X € R3*? and y € R%:

1 2 5
X=13 1|, y=138
2 4 11

Compute the ridge regression solution w3 = (X TX+ M )X Ty for A = 1. Use Cholesky
decomposition to solve the system numerically.

4. Starting from the regularized loss L(w) = 3|y — Xwl|; + %Hw”%, show that this is

equivalent to the negative log posterior (up to constants):

—logp(w |y, X) = —logp(y | w, X) — log p(w)

with Gaussian likelihood N (y | Xw,o%I) and prior p(w) = N(w | 0,72I). What is X in
terms of 02 and 727

Bayesian Linear Regression

1. Given:

e Prior: p(w) = N(w | 0,021)



+ Likelihood: p(y | w,X) = N(y | Xw, 0. 1)

Show that the posterior is Gaussian by computing the exponent of p(y | w, X )p(w)
and identifying the posterior precision matrix X! = a—ng TX + U%I and mean p =
y w

by (ULEXTy).

2. For a new input x, and posterior p(w | y, X) = N (w | p, X), the predictive distribution
is obtained by marginalizing:

Py |20y X) = [Ny |0 @n o)V (w] 4. 3) dw

Show that this equals NV (y, | p' 4, ] Sz, + US) using the property that the convolution
of two Gaussians is Gaussian.

3. Consider 1D Bayesian linear regression with:

o Prior: p(w) =N (w]0,1)
 Single observation: (x,y) = (1,2) with noise variance af, =1

9 -1

Compute the posterior mean p and variance o2 using the formulas 02 = ( La? 4+ U%)

-2
Ty

and u = 02%373/. Then predict the distribution of y, = f(z. = 2).
Yy
4. For a dataset with two observations (z1,y1) = (1,1) and (z2,y2) = (2,3), and:

e Prior: p(w) =N(w]0,2)
o Noise variance: ag =0.5

Construct the matrices X, y and compute the posterior covariance 3 = (%X TX + %) -
Y

and posterior mean. Make a prediction at x, = 3.

Model Selection

1. Suppose two models M (linear) and My (polynomial degree 5) are fit to data. Model
M always achieves a higher likelihood p(y | wa, X, Ms) > p(y | w1, X, M) on the
training set. However, Bayesian model selection chooses M. Explain why the marginal
likelihood p(y | X, M) (which marginalizes over parameters) provides a better criterion
than the marginal likelihood of the best-fit parameters.

2. Consider two models for the observed data y:

o M;: Likelihood p(y | w, X, M;) = N(y | Xw,0.12I) with prior p(w) = N (w |
0,1001)



e My Likelihood p(y | w, X, M) = N(y | Xw,12I) with prior p(w) = N (w |
0,1001)

Which model assigns higher marginal likelihood to a large-variance dataset? (Hint: the
marginal likelihood for a Gaussian regression is p(y | X, M) = N(y | 0, X2, X " + 021)
where ¥, is the prior covariance.)
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