

Linear Regression

Advanced Statistical Inference

Simone Rossi

Maximum Likelihood Estimation

- Given a dataset $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ with $\mathbf{x}_n \in \mathbb{R}^D$, assume the generative model $y_n = \mathbf{w}^\top \mathbf{x}_n + \epsilon_n$ where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ independently. Write down the log-likelihood $\ell(\mathbf{w}) = \log p(\mathbf{y} | \mathbf{w}, \mathbf{X})$ and find $\nabla_{\mathbf{w}} \ell(\mathbf{w}) = 0$ to derive the MLE \mathbf{w}^* .
- Let $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ be the least squares estimator. The true data is generated as $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$. Prove that $\mathbb{E}[\hat{\mathbf{w}}] = \mathbf{w}^*$ by substituting the generative model into the estimator.
- For a dataset with $\mathbf{X} \in \mathbb{R}^{3 \times 2}$ and $\mathbf{y} \in \mathbb{R}^3$:

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 4 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 5 \\ 8 \\ 11 \end{pmatrix}$$

Compute the ridge regression solution $\mathbf{w}_\lambda^* = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}$ for $\lambda = 1$. Use Cholesky decomposition to solve the system numerically.

- Starting from the regularized loss $\mathcal{L}(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$, show that this is equivalent to the negative log posterior (up to constants):

$$-\log p(\mathbf{w} | \mathbf{y}, \mathbf{X}) = -\log p(\mathbf{y} | \mathbf{w}, \mathbf{X}) - \log p(\mathbf{w})$$

with Gaussian likelihood $\mathcal{N}(\mathbf{y} | \mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I})$ and prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \tau^2 \mathbf{I})$. What is λ in terms of σ^2 and τ^2 ?

Bayesian Linear Regression

- Given:

- Prior: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \sigma_w^2 \mathbf{I})$

- Likelihood: $p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) = \mathcal{N}(\mathbf{y} \mid \mathbf{X}\mathbf{w}, \sigma_y^2 \mathbf{I})$

Show that the posterior is Gaussian by computing the exponent of $p(\mathbf{y} \mid \mathbf{w}, \mathbf{X})p(\mathbf{w})$ and identifying the posterior precision matrix $\Sigma^{-1} = \frac{1}{\sigma_y^2} \mathbf{X}^\top \mathbf{X} + \frac{1}{\sigma_w^2} \mathbf{I}$ and mean $\boldsymbol{\mu} = \Sigma \left(\frac{1}{\sigma_y^2} \mathbf{X}^\top \mathbf{y} \right)$.

2. For a new input \mathbf{x}_* and posterior $p(\mathbf{w} \mid \mathbf{y}, \mathbf{X}) = \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}, \Sigma)$, the predictive distribution is obtained by marginalizing:

$$p(y_* \mid \mathbf{x}_*, \mathbf{y}, \mathbf{X}) = \int \mathcal{N}(y_* \mid \mathbf{w}^\top \mathbf{x}_*, \sigma_y^2) \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}, \Sigma) d\mathbf{w}$$

Show that this equals $\mathcal{N}(y_* \mid \boldsymbol{\mu}^\top \mathbf{x}_*, \mathbf{x}_*^\top \Sigma \mathbf{x}_* + \sigma_y^2)$ using the property that the convolution of two Gaussians is Gaussian.

3. Consider 1D Bayesian linear regression with:

- Prior: $p(w) = \mathcal{N}(w \mid 0, 1)$
- Single observation: $(x, y) = (1, 2)$ with noise variance $\sigma_y^2 = 1$

Compute the posterior mean μ and variance σ^2 using the formulas $\sigma^2 = \left(\frac{1}{\sigma_y^2} x^2 + \frac{1}{\sigma_w^2} \right)^{-1}$ and $\mu = \sigma^2 \frac{1}{\sigma_y^2} xy$. Then predict the distribution of $y_* = f(x_* = 2)$.

4. For a dataset with two observations $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (2, 3)$, and:

- Prior: $p(w) = \mathcal{N}(w \mid 0, 2)$
- Noise variance: $\sigma_y^2 = 0.5$

Construct the matrices \mathbf{X} , \mathbf{y} and compute the posterior covariance $\Sigma = \left(\frac{1}{\sigma_y^2} \mathbf{X}^\top \mathbf{X} + \frac{1}{2} \mathbf{I} \right)^{-1}$ and posterior mean. Make a prediction at $x_* = 3$.

Model Selection

1. Suppose two models \mathcal{M}_1 (linear) and \mathcal{M}_2 (polynomial degree 5) are fit to data. Model \mathcal{M}_2 always achieves a higher likelihood $p(\mathbf{y} \mid \hat{\mathbf{w}}_2, \mathbf{X}, \mathcal{M}_2) > p(\mathbf{y} \mid \hat{\mathbf{w}}_1, \mathbf{X}, \mathcal{M}_1)$ on the training set. However, Bayesian model selection chooses \mathcal{M}_1 . Explain why the marginal likelihood $p(\mathbf{y} \mid \mathbf{X}, \mathcal{M})$ (which marginalizes over parameters) provides a better criterion than the marginal likelihood of the best-fit parameters.
2. Consider two models for the observed data \mathbf{y} :
 - \mathcal{M}_1 : Likelihood $p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}, \mathcal{M}_1) = \mathcal{N}(\mathbf{y} \mid \mathbf{X}\mathbf{w}, 0.1^2 \mathbf{I})$ with prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid 0, 100 \mathbf{I})$

- \mathcal{M}_2 : Likelihood $p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}, \mathcal{M}_2) = \mathcal{N}(\mathbf{y} \mid \mathbf{X}\mathbf{w}, 1^2\mathbf{I})$ with prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, 100\mathbf{I})$

Which model assigns higher marginal likelihood to a large-variance dataset? (Hint: the marginal likelihood for a Gaussian regression is $p(\mathbf{y} \mid \mathbf{X}, \mathcal{M}) = \mathcal{N}(\mathbf{y} \mid \mathbf{0}, \mathbf{X}\Sigma_p\mathbf{X}^\top + \sigma^2\mathbf{I})$ where Σ_p is the prior covariance.)