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Notation

¢ Vectors v € R"

U1
’U fry
(%)
e Matrices A € R™*"
A A o A
A1 Ay - Ay,
A= . . .
Aml Am2 T Amn

e v; indexes elements of v for some
o A;; indexes elements of A for some ¢ and j

Basic matrix operations
o Matrix addition: (A + B);; = a;; + bjj
o Scalar multiplication: (yB);; = vbs;

e Matrix-vector multiplication:

(A’U)Z' = Z aijvj

j=1

e Matrix-matrix multiplication:

(AB)Z']' = Z aikbkj
k=1



@ Tip

In Numpy, use @ for both matrix-vector and matrix-matrix multiplication (depending on
the dimensions of the arrays).

import numpy as np

A = np.array([[1, 2], [3, 411)
B = np.array([[5, 6], [7, 8]1)
v = np.array([1, 2])

C
d

A Q@B
A Qv

print (£"C={C}")
print (£f"d={d}")

Cc=[[19 22]
[43 50]]
d=[ 5 11]

o Transpose A': (A");; = aj; and transpose of products (AB)" = B' AT

Squared matrices

A square matrix is one where the number of rows equals the number of columns (e.g., A €
R’H,Xn).

Properties:

A squared matrix is symmetric if A= A"
o A squared matrix is orthogonal if ATA = AAT =T
e A matrix is diagonal if a;; = 0 for i # j

Trace

o Trace operator Tr(A) = Y7 | aj;
o Trace is invariant under cyclic permutations: Tr(ABC) = Tr(CAB) = Tr(BCA)




Matrix inverse

The inverse of a square matrix A is denoted A~! and satisfies

AAT' =ATTA=T

Important

The inverse does not always exist. We will see later the conditions under which it does.

If A is invertible, then A is said to be non-singular. Otherwise, A is singular.

Additional properties:

« Inverse of product: (AB)™' = B71A~!
« Woodbury matrix identity: (A+UCV)™ ' =A"! - AlU(C'+VAIU)'VAT!

Determinant

The determinant of a square matrix A is denoted |A| or det(A) and is a scalar value.

a b

e For a 2 x 2 matrix A = [ ¢ d ] , the determinant is ad — bc.

e For a general n X n matrix, the determinant is defined recursively as

det(A) = > (=1)'"ay;det(A_y )
=1

where A_; _; is the matrix A with the first row and j-th column removed. Note that A_; _;
isa (n—1) x (n — 1) matrix.

This is called the cofactor expansion of the determinant.



Properties of determinants

aiy - Qlp
o Given a triangular matrix A= | ¢ .. ! |, then det(A) =[]} aii-
0 0 anpp

o Determinant of a sum of matrices: det(A + B) # det(A) + det(B)

o Determinant of a product: det(AB) = det(A) det(B)

o Determinant of an inverse: det (A_l) = det(A)™*

e Determinant of a transpose: det <AT) = det(A)

o Determinant of a scalar multiple: det(yA) =" det(A)
e A matrix is invertible if and only if its determinant is non-zero.

o Determinant of an orthogonal matrix: det(Q) = £1

Spectral decomposition

Eigenvalues and eigenvectors

e Let A be an n x n matrix
o A is said to have an eigenvalue A and (non-zero) eigenvector v corresponding to \ if
Av =)o

o Eigenvalues are the A values that solve the determinantal equation det(A — A\I) = 0.
« Eigenvectors are the corresponding v values for which (A — A\I)v = 0.



Eigendecomposition

e The Spectral theorem says that every square and symmetric matrix A can be decomposed
as

A=QAQT

e The columns of @ are the eigenvectors of A
o The diagonal matrix A contains the eigenvalues of A: A = diag(A)

M O - 0
0 A -+ 0
A= . )
0 0 - M\

« The eigenvectors may be chosen to be orthonormal, so that Q 'Q = QQ'" = I.

Properties of eigendecomposition

o We can use the eigendecomposition to compute the determinant of A as det(A) = [T, Ai.
1 Proof
By the spectral theorem, A = QAQ', so det(A) = det (QAQT) =

det(Q) det(A) det(QT) = det(A) = [T, i

o The trace of A is the sum of its eigenvalues: Tr(A) =>"1" | \;.

i Proof

By the spectral theorem, A = QAQ", so Tr(A) = Tr(QAQ") = Tr(Q"QA) = Tr(A) =
DV
=1\

Positive definite and semidefinite matrices

o The n x n matrix A is said to be positive definite if y" Ay > 0 for all y # 0.
o The n x n matrix A is said to be positive semidefinite if y" Ay > 0 for all y # 0.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive.



1 Proof

Let A = QAQ' be the spectral decomposition of A. Then y'Ay = y'QAQ"y =
(QTy)TAQTy) = X7, N\i(q] y)?. Since \; > 0 for all i, then y " Ay > 0 for all y # 0.

Corollary

o If at least one eigenvalue of a symmetric matrix is zero, then the matrix is positive
semidefinite.

Example: Show that X ' X is always positive semidefinite

Let X be an n X p matrix and y be a p-dimensional vector. Then

y' (X' X)y=(Xy) (Xy)

= ZTZ

22 >0

I

I
—

]

To guarantee that X " X is positive definite, we also need to ensure that X is full rank.
In practice:

Sometimes, we need to ensure that X ' X is positive definite numerically. To ensure that we
can add a small jitter to the diagonal, X " X + eI, with € > 0.

Cholesky decomposition

e Cholesky decomposition is an algorithm to efficiently compute determinants and inverses
of positive definite matrices.

Define lower triangular matrix L

Ly 0O -~ 0
Loy Lo --- 0

L = . . .
Lnl Ln? T Lnn



so that A = LL".

Question: How to go from A to L?

Example of Cholesky algorithm: for 3 x 3 matrix A:

LH 0 0 L11 L21 L31 L%l (symmetric)
LL"=| Ly Ly O 0 Ly L3z | =| LoiL1s L% + 13,
L31 L3z Lsg 0 0  Lss LsiLyy  LsiLoy + LaaLos L + L3, + L3,

Properties of Cholesky decomposition:
o Tterative algorithm costing O(n?) operations.
e The determinant of A is det(A) = det (LLT) = det(L)2 = ([T, Lii)2

o Usefull for solving A™1'b (e.g., in linear systems and in linear regression) via back
substitution.

e The inverse of A can be computed as back substitution

Cholesky decomposition for solving linear systems

To solve the linear system Az = b, instead of computing A~ 'b, we can use the Cholesky
decomposition as follows:

1. Compute the Cholesky decomposition A = LLT
2. Solve the triangular system Ly = b for y via forward substitution
3. Solve the triangular system L@ = y for a via back substitution
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