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Notation

• Vectors v ∈ Rn

v =

 v1
...

vn


• Matrices A ∈ Rm×n

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... . . . ...
Am1 Am2 · · · Amn


• vi indexes elements of v for some i
• Aij indexes elements of A for some i and j

Basic matrix operations

• Matrix addition: (A + B)ij = aij + bij

• Scalar multiplication: (γB)ij = γbij

• Matrix-vector multiplication:

(Av)i =
n∑

j=1
aijvj

• Matrix-matrix multiplication:

(AB)ij =
n∑

k=1
aikbkj
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� Tip

In Numpy, use @ for both matrix-vector and matrix-matrix multiplication (depending on
the dimensions of the arrays).

import numpy as np
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
v = np.array([1, 2])

C = A @ B
d = A @ v

print(f"C={C}")
print(f"d={d}")

C=[[19 22]
[43 50]]

d=[ 5 11]

. . .

• Transpose A⊤: (A⊤)ij = aji and transpose of products (AB)⊤ = B⊤A⊤

Squared matrices

A square matrix is one where the number of rows equals the number of columns (e.g., A ∈
Rn×n).

Properties:

• A squared matrix is symmetric if A = A⊤

• A squared matrix is orthogonal if A⊤A = AA⊤ = I
• A matrix is diagonal if aij = 0 for i ̸= j

. . .

Trace

• Trace operator Tr(A) =
∑n

i=1 aii

• Trace is invariant under cyclic permutations: Tr(ABC) = Tr(CAB) = Tr(BCA)

2



Matrix inverse

The inverse of a square matrix A is denoted A−1 and satisfies

AA−1 = A−1A = I

. Important

The inverse does not always exist. We will see later the conditions under which it does.

If A is invertible, then A is said to be non-singular. Otherwise, A is singular.

Additional properties:

• Inverse of product: (AB)−1 = B−1A−1

• Woodbury matrix identity: (A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

Determinant

The determinant of a square matrix A is denoted |A| or det(A) and is a scalar value.

• For a 2 × 2 matrix A =
[

a b
c d

]
, the determinant is ad − bc.

• For a general n × n matrix, the determinant is defined recursively as

det(A) =
n∑

j=1
(−1)1+ja1j det(A−1,−j)

where A−1,−j is the matrix A with the first row and j-th column removed. Note that A−1,−j

is a (n − 1) × (n − 1) matrix.

This is called the cofactor expansion of the determinant.

3



Properties of determinants

• Given a triangular matrix A =

 a11 · · · a1n

0 . . . ...
0 0 ann

, then det(A) =
∏n

i=1 aii.

• Determinant of a sum of matrices: det(A + B) ̸= det(A) + det(B)

• Determinant of a product: det(AB) = det(A) det(B)

• Determinant of an inverse: det
(
A−1

)
= det(A)−1

• Determinant of a transpose: det
(
A⊤

)
= det(A)

• Determinant of a scalar multiple: det(γA) = γn det(A)

• A matrix is invertible if and only if its determinant is non-zero.

• Determinant of an orthogonal matrix: det(Q) = ±1

Spectral decomposition

Eigenvalues and eigenvectors

• Let A be an n × n matrix
• A is said to have an eigenvalue λ and (non-zero) eigenvector v corresponding to λ if

Av = λv

• Eigenvalues are the λ values that solve the determinantal equation det(A − λI) = 0.
• Eigenvectors are the corresponding v values for which (A − λI)v = 0.
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Eigendecomposition

• The Spectral theorem says that every square and symmetric matrix A can be decomposed
as

A = QΛQ⊤

• The columns of Q are the eigenvectors of A
• The diagonal matrix Λ contains the eigenvalues of A: Λ = diag(λ)

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


• The eigenvectors may be chosen to be orthonormal, so that Q⊤Q = QQ⊤ = I.

Properties of eigendecomposition

• We can use the eigendecomposition to compute the determinant of A as det(A) =
∏n

i=1 λi.

ñ Proof

By the spectral theorem, A = QΛQ⊤, so det(A) = det
(
QΛQ⊤

)
=

det(Q) det(Λ) det
(
Q⊤

)
= det(Λ) =

∏n
i=1 λi.

• The trace of A is the sum of its eigenvalues: Tr(A) =
∑n

i=1 λi.

ñ Proof

By the spectral theorem, A = QΛQ⊤, so Tr(A) = Tr(QΛQ⊤) = Tr(Q⊤QΛ) = Tr(Λ) =∑n
i=1 λi.

Positive definite and semidefinite matrices

• The n × n matrix A is said to be positive definite if y⊤Ay > 0 for all y ̸= 0.

• The n × n matrix A is said to be positive semidefinite if y⊤Ay ≥ 0 for all y ̸= 0.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive.
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ñ Proof

Let A = QΛQ⊤ be the spectral decomposition of A. Then y⊤Ay = y⊤QΛQ⊤y =
(Q⊤y)⊤Λ(Q⊤y) =

∑n
i=1 λi(q⊤

i y)2. Since λi > 0 for all i, then y⊤Ay > 0 for all y ̸= 0.

. Corollary

• If at least one eigenvalue of a symmetric matrix is zero, then the matrix is positive
semidefinite.

Example: Show that X⊤X is always positive semidefinite

Let X be an n × p matrix and y be a p-dimensional vector. Then

y⊤(X⊤X)y = (Xy)⊤(Xy)
= z⊤z

=
n∑

i=1
z2

i ≥ 0

To guarantee that X⊤X is positive definite, we also need to ensure that X is full rank.

In practice:

Sometimes, we need to ensure that X⊤X is positive definite numerically. To ensure that we
can add a small jitter to the diagonal, X⊤X + ϵI, with ϵ > 0.

Cholesky decomposition

• Cholesky decomposition is an algorithm to efficiently compute determinants and inverses
of positive definite matrices.

Define lower triangular matrix L

L =


L11 0 · · · 0
L21 L22 · · · 0

...
... . . . ...

Ln1 Ln2 · · · Lnn


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so that A = LL⊤.

Question: How to go from A to L?

Example of Cholesky algorithm: for 3 × 3 matrix A:

LL⊤ =

 L11 0 0
L21 L22 0
L31 L32 L33


 L11 L21 L31

0 L22 L32
0 0 L33

 =

 L2
11 (symmetric)

L21L11 L2
21 + L2

22
L31L11 L31L21 + L32L22 L2

31 + L2
32 + L2

33


Properties of Cholesky decomposition:

• Iterative algorithm costing O(n3) operations.

• The determinant of A is det(A) = det
(
LL⊤

)
= det(L)2 = (

∏n
i=1 Lii)2

• Usefull for solving A−1b (e.g., in linear systems and in linear regression) via back
substitution.

• The inverse of A can be computed as back substitution

Cholesky decomposition for solving linear systems

To solve the linear system Ax = b, instead of computing A−1b, we can use the Cholesky
decomposition as follows:

1. Compute the Cholesky decomposition A = LL⊤

2. Solve the triangular system Ly = b for y via forward substitution
3. Solve the triangular system L⊤x = y for x via back substitution
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