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Introduction

We need to compute

Epa)[f ()] = /f(w)p(x) dz

where p(x) is the probability density function of .

Monte Carlo methods are a class of computational algorithms that rely on repeated random
sampling to obtain numerical results.

1N
i=1
where x; ~ p(x).

Compute 7 with Monte Carlo
Area of a circle of radius r is w2 but also

T T
I= / I(x? + y? < r?)dzdy
—r J =T

where T is 1 if the condition is true and 0 otherwise. Then, m = I/r2.

With Monte-Carlo
I=(2r)? / / f (@, y)p(z)p(y)dady
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where f(z,y) = I(2? + y*> < r?) and p(z) = p(y) =U (-7, 7).



Theoretical properties of Monte Carlo methods

e Consistency: As the number of samples N goes to infinity, the estimate converges to
the true value.

¢ Central Limit Theorem: The estimate is normally distributed around the true value.

1Y o?

where o2 is the variance of f(x).

Note: This is independent of the dimensionality of .

1 Important

How do we sample from p(x) when p(x) is not known? For example, when it’s a posterior
distribution p(@ | y).

Sampling from simple distributions

Sampling from a Gaussian distribution
Univariate case
Suppose we want to sample from a (univariate) Gaussian distribution p(z) = N(z | p, o?).
Fach sample can be obtained by
Ti=u+0%;

where z; ~ N(0,1).



Multivariate case

Suppose we want to sample from a multivariate Gaussian distribution p(x) = N (z | p, X).

1. Compute the Cholesky decomposition of ¥ = LL”.
2. Sample z ~ N(0,I).
3. Compute x = pu + Lz.

Note: The Cholesky decomposition is only defined for positive-definite matrices. If 3 is not
positive-definite, you will not be able to sample from the distribution.

Rejection sampling

Suppose we want to sample from a distribution p(x) that we only know up to a normalizing
constant p(x) = p—éz), where Z = [ p*(z)dz.

In rejection sampling, we start from a distribution ¢(x) such that Cq(z) > p*(x) for all x,

with C > 0.

1. Sample z ~ gq(z).
2. Sample u ~ U(0,Cq(x)).
3. If u < p*(x), accept x; otherwise, reject it and go back to step 1.

Rejection sampling algorithm

It’s possible to prove that
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¢ We want to have high acceptance rate.
o We want to have C' as small as possible.
e ... but large enough to satisfy Cq(z) > p*(x).

1 Important

Note: In high dimensions (> 100), rejection sampling is not efficient. The volume of
the region where p*(x) is large becomes very small compared to the volume of the region
where ¢(z) is large.

We need something more efficient.
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