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Introduction

We need to compute

Ep(x)[f(x)] =
∫

f(x)p(x) dx

where p(x) is the probability density function of x.

Monte Carlo methods are a class of computational algorithms that rely on repeated random
sampling to obtain numerical results.

Ep(x)[f(x)] ≈ 1
N

N∑
i=1

f(xi)

where xi ∼ p(x).

Compute π with Monte Carlo

Area of a circle of radius r is πr2 but also

I =
∫ r

−r

∫ r

−r
I(x2 + y2 ≤ r2)dxdy

where I is 1 if the condition is true and 0 otherwise. Then, π = I/r2.

With Monte-Carlo
I = (2r)2

∫ ∫
f(x, y)p(x)p(y)dxdy

≈ (2r)2 1
N

N∑
i=1

f(xi, yi)

where f(x, y) = I(x2 + y2 ≤ r2) and p(x) = p(y) = U(−r, r).
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Theoretical properties of Monte Carlo methods

• Consistency: As the number of samples N goes to infinity, the estimate converges to
the true value.

• Central Limit Theorem: The estimate is normally distributed around the true value.

(
1
N

N∑
i=1

f(xi) − Ep(x)[f(x)]
)

∼ N
(

0,
σ2

N

)

where σ2 is the variance of f(x).

Note: This is independent of the dimensionality of x.

, Important

How do we sample from p(x) when p(x) is not known? For example, when it’s a posterior
distribution p(θ | y).

Sampling from simple distributions

Sampling from a Gaussian distribution

Univariate case

Suppose we want to sample from a (univariate) Gaussian distribution p(x) = N (x | µ, σ2).

Each sample can be obtained by

xi = µ + σzi

where zi ∼ N (0, 1).
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Multivariate case

Suppose we want to sample from a multivariate Gaussian distribution p(x) = N (x | µ, Σ).

1. Compute the Cholesky decomposition of Σ = LLT .
2. Sample z ∼ N (0, I).
3. Compute x = µ + Lz.

Note: The Cholesky decomposition is only defined for positive-definite matrices. If Σ is not
positive-definite, you will not be able to sample from the distribution.

Rejection sampling

Suppose we want to sample from a distribution p(x) that we only know up to a normalizing
constant p(x) = p∗(x)

Z , where Z =
∫

p∗(x)dx.

In rejection sampling, we start from a distribution q(x) such that Cq(x) ≥ p∗(x) for all x,
with C > 0.

1. Sample x ∼ q(x).
2. Sample u ∼ U(0, Cq(x)).
3. If u ≤ p∗(x), accept x; otherwise, reject it and go back to step 1.

Rejection sampling algorithm

It’s possible to prove that

P(accept) ∝ 1
C

• We want to have high acceptance rate.
• We want to have C as small as possible.
• . . . but large enough to satisfy Cq(x) ≥ p∗(x).

, Important

Note: In high dimensions (> 100), rejection sampling is not efficient. The volume of
the region where p∗(x) is large becomes very small compared to the volume of the region
where q(x) is large.
We need something more efficient.
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