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Sampling from an unknown distribution

• Problem: How to sample from a distribution p(θ | y) when we don’t know its form and
the normalization constant Z?

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC): use randomness to generate samples from a
distribution

ñ History

• 1946: Stanislaw Ulam, John von Neumann, and Nicholas Metropolis working at
Los Alamos National Laboratory develop the Metropolis algorithm.

• 1947: John von Neumann implements the algorithm on the ENIAC computer to
simulate neutron diffusion.

• 1953: MCMC algorithms published in the Journal of Chemical Physics.

Metropolis-Hastings Algorithm

MH algorithm produces a sequence of samples θ(1), θ(2), . . . , θ(T ) that converges to the target
distribution p(θ | y).

Properties:

• Markov Chain: A sequence of random variables θ(1), θ(2), . . . , θ(T ) where the distribution
of θ(t) depends only on θ(t−1).

• Stationary Distribution: The distribution of θ(t) converges to the target distribution
p(θ | y) as t→∞.
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Metropolis-Hastings Algorithm

How to generate the sequence of samples θ(1), θ(2), . . . , θ(T )?

1. Initialization: Start with an initial value θ(1).

2. Proposal Distribution: Generate a candidate sample θ′ from a proposal distribution
q(θ′ | θ(t)).

3. Accepts/Rejects: Accept the candidate sample based on some criteria.

• If accepted, set θ(t+1) = θ′.
• If rejected, set θ(t+1) = θ(t).

4. Repeat: Repeat steps 2-3 until we have T samples.

Metropolis-Hastings Algorithm: Proposal Distribution

q(θ′ | θ(t)) is a distribution that generates candidate samples θ′ given the current sample θ(t).

• We are free to choose any distribution as the proposal distribution (with the same or
larger support as the target distribution).

• Symmetric Proposal Distribution: q(θ′ | θ(t)) = q(θ(t) | θ′).

• Random Walk Proposal: q(θ′ | θ(t)) = N (θ(t), Σ).

Metropolis-Hastings Algorithm: Acceptance Criteria

How to decide whether to accept or reject the candidate sample θ′?

In the general case, acceptance based on:

α = p(θ′ | y)p(θ(t) | θ′)
p(θ(t) | y)p(θ′ | θ(t))

If proposal distribution is symmetric,

α = p(θ′ | y)
p(θ(t) | y)

= p(y | θ′)p(θ′)/Z

p(y | θ(t))p(θ(t))/Z
= p(y | θ′)p(θ′)

p(y | θ(t))p(θ(t))
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� Tip

Compute the acceptance ratio in the log-space to be numerically stable.

Metropolis-Hastings Algorithm: Acceptance Criteria

1. Acceptance: If α ≥ 1, accept the candidate sample θ′.
2. Rejection: If α < 1, accept the candidate sample θ′ with probability α.

Intuition:

1. If θ′ is more likely than θ(t), accept θ′.
2. If θ′ is less likely than θ(t), accept θ′ with some probability.

Metropolis-Hastings Algorithm

Steps:

1. Initialize θ(1).
2. For t = 1, 2, . . . , T :

• Generate a candidate sample θ′ ∼ q(θ′ | θ(t)).
• Compute the acceptance ratio α.
• Sample u ∼ U(0, 1).
• Compute A = min(1, α).
• Set new sample:

θ(t+1) =
{

θ′ if u ≤ A (accept)
θ(t) if u > A (reject)

3. Repeat step 2 until we have T samples.

Assessing Convergence

When to stop?

• MCMC algorithms converge to the target distribution as T →∞.

• Practically, we need to decide when to stop the algorithm or to be able to assess its
convergence.
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1. Burn-in Period: Discard the initial samples to allow the chain to converge to the target
distribution.

2. Visual Inspection: Plot the trace of the samples and check for convergence.

3. Multiple Chains: Run multiple chains from different initial values and compare their
results.

4. Compute heuristics: Compute some metrics to assess convergence.

Assessing Convergence with R̂

Intuition: If multiple chains have converged, in-chain variance should be similar to between-
chain variance.

Potential Scale Reduction Factor (R̂):

R̂ =

√
between-chain variance

in-chain variance

In practice:

• R̂ > 1.01: Some chains have not converged, you may need to run the chains longer.
• R̂ < 1.01: Convergence has been reached.

Propose better and accept more

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC): A more sophisticated MCMC algorithm that uses the
concept of Hamiltonian dynamics to propose better samples.

Idea:

• Use gradient information to guide local exploration of the target distribution.

• Propose samples by simulating the dynamics of a particle moving in a potential energy
landscape.
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Hamiltonian Dynamics

A particle moving in a potential energy landscape U(θ) with momentum ρ.

Hamiltonian:

H(θ, ρ) = U(θ) +K(ρ)

• U(θ): Potential energy of the particle at position θ.
• K(ρ): Kinetic energy of the particle with momentum ρ.

We consider:

• U(θ) = − log p(θ | y), where p(θ | y) is the target distribution.
• K(ρ) = 1

2ρM−1ρ, where M is the mass matrix.

Energy Conservation

• In case of no-friction, the Hamiltonian is conserved.

• The trajectory of the particle in the potential energy landscape is governed by the
Hamiltonian equations:

dθ

dt
= ∇ρH(θ, ρ) = ∇ρK(ρ)

dρ

dt
= −∇θH(θ, ρ) = −∇θU(θ)

The energy is conserved: dH
dt = 0.

, Important

To simulate the dynamics of the particle, we don’t need to know the normalization
constant Z for U(θ) = − log p(θ | y).
Why? Because the dynamics only depend on the gradient of the log-density ∇θ log p(θ |
y) = ∇θ[log p(y | θ) + log p(θ)− log Z].
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Numerical Solution to the Hamiltonian Equations

dθ

dt
= ∇ρK(ρ)

dρ

dt
= −∇θU(θ)

Solving exactly is infeasible, but we can use numerical methods to approximate the solution.

Leapfrog Integrator:

Start with θ, ρ.

Repeat for L steps:

1. Update momentum: ρ← ρ− ϵ
2∇θU(θ).

2. Update position: θ ← θ + ϵ∇ρK(ρ).
3. Update momentum: ρ← ρ− ϵ

2∇θU(θ).

Simulating Hamiltonian Dynamics ⇔ Sampling

p(θ, ρ) = 1
ZH

exp(−H(θ, ρ)) = 1
ZH

exp
(
−U(θ)− 1

2ρ⊤M−1ρ

)
The marginal distribution of θ is the target distribution p(θ | y).

p(θ | y) =
∫

p(θ, ρ) dρ = 1
Z

exp(−U(θ)) 1
ZK

∫
exp

(
−1

2ρ⊤M−1ρ

)
dρ = 1

Z
exp(−U(θ))

Hamiltonian Monte Carlo Algorithm

Suppose the last sample in the sequence is θ(t−1)

1. Initialization:

• Set θ′
0 = θ(t−1).

• Sample momentum ρ′
0 ∼ N (0, M).

2. Hamiltonian Dynamics:

• Simulate Hamiltonian dynamics for L steps to obtain θ′
L, ρ′

L.

3. Acceptance:

• Accept with probability α
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α = min
(

1,
p(θ′

L, ρ′
L)

p(θ(t−1), ρ(t−1))

)
= min

(
1, exp

(
−H(θ′

L, ρ′
L) +H(θ(t−1), ρ(t−1))

))

Tuning HMC

• Number of Steps: The number of steps L to simulate the Hamiltonian dynamics.
• Step Size: The size of the leapfrog steps ϵ.
• Mass Matrix: The mass matrix M .

Considerations:

1. L needs to be large enough to explore the target distribution, but small enough to avoid
wasting computation.

2. ϵ needs to be small enough to avoid numerical instability, but large enough to have α
close to 1.

3. M can be set to the identity matrix or estimated from the target distribution (after
burn-in).

Extensions of HMC

• No-U-Turn Sampler (NUTS): Automatically adapt the number of steps L.

• Stochastic Gradient Hamiltonian Monte Carlo: Use stochastic gradients to scale
to large datasets

U(θ) = − log p(θ | y) ∝ −
n∑

i=1
log p(yi | θ)− log p(θ)
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