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Where are we?

Given a likelihood p(y | θ) and a prior p(θ), the goal is to compute the posterior distribution
p(θ | y)

p(θ | y) = p(y | θ)p(θ)
p(y)

. . .

We have seen that exact inference is possible if the prior and likelihood are conjugate distributions
(e.g. for Bayesian linear regression with Gaussian likelihood and Gaussian prior).

. . .

But in most cases, the Bayesian approach is intractable.

• We cannot compute the posterior distribution p(θ | y) in closed form.
• We cannot make predictions for a new point y⋆ in closed form p(y⋆ | y) =

∫
p(y⋆ | θ)p(θ |

y) dθ.

Last Week

We have seen that we can use Monte Carlo methods to approximate the posterior distribution
p(θ | y).

• Rejection sampling: sample from a simple distribution and accept/reject samples
• Markov Chain Monte Carlo (MCMC): sample from a Markov chain that converges

to the target distribution.

– Metropolis-Hastings: do random walk in the parameter space and accept/reject
samples based on the ratio of the target distribution in the current and next state.
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– Hamiltonian Monte Carlo (HMC): explore the parameter space by simulating a
particle with a potential given by negative log posterior and a random momentum.

. . .

This Week

In this week, we will see another way to approximate the posterior distribution p(θ | y).

Can we use a simpler distribution to approximate the posterior?

And if so, how?

Laplace Approximation

Laplace Approximation

Idea:

• Let’s find a way to have a local approximation of the posterior distribution p(θ | y)
around the mode θ̂.
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Derivation of Laplace Approximation

Given a likelihood p(y | θ) and a prior p(θ), the posterior distribution is given by

p(θ | y) = 1
Z

exp (−U(θ))

where Z is the normalizing constant and U(θ) = − log p(y | θ)− log p(θ) is the (un-normalized)
negative log posterior.

. . .

Taylor expand U(θ) around the mode θ̂ to the second order

U(θ) ≈ U(θ̂) + (θ − θ̂)⊤g + 1
2(θ − θ̂)⊤H(θ − θ̂)

where:

• g = ∇U(θ̂) is the gradient
• H = ∇2U(θ̂) is the Hessian matrix

Hessians

The Hessian matrix H is a square matrix D ×D of second-order partial derivatives of U(θ)
computed in θ.

H = ∇2U(θ)
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Derivation of Laplace Approximation

U(θ) ≈ U(θ̂) + (θ − θ̂)⊤g + 1
2(θ − θ̂)⊤H(θ − θ̂)

• The mode θ̂ is the value of θ that maximizes p(θ | y) or equivalently minimizes U(θ).

• Because we are expanding around the mode, g = ∇U(θ̂) = 0.

Approximate the posterior distribution with this expansion:

p(θ | y) ≈ 1
Z

exp
(
−U(θ̂)− 1

2(θ − θ̂)⊤H(θ − θ̂)
)

= 1
Z

exp
(
−U(θ̂)

)
exp

(
−1

2(θ − θ̂)⊤H(θ − θ̂)
)

Derivation of Laplace Approximation

p(θ | y) ≈ 1
Z

exp
(
−U(θ̂)

)
exp

(
−1

2(θ − θ̂)⊤H(θ − θ̂)
)

Compare this to the form of a Gaussian distribution:

N (θ | µ, Σ) = 1
2(2π)D/2 det(Σ)−1/2 exp

(
−1

2(θ − µ)⊤Σ−1(θ − µ)
)

Taylor expansion of the log posterior ⇒ Gaussian approximation of the posterior.

• The mean of the Gaussian is the mode of the posterior θ̂.

• The covariance of the Gaussian is the inverse of the Hessian H−1.

• The normalizing constant is Z = (2π)D/2 det(H)−1/2 exp
(
−U(θ̂)

)
.
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Practical Considerations

1. The mode θ̂ can be found by gradient-based optimization

θ ← θ − η∇U(θ) until convergence

2. The exact Hessian H can be expensive to compute and invert for large D.

• Use a diagonal approximation of the Hessian or a block-diagonal approximation.

3. The Laplace approximation is only valid in a neighborhood of the mode.

Laplace Approximation: Example

Consider a Gamma distribution with shape parameter α and rate parameter β.

p(x | α, β) = βα

Γ(α)xα−1 exp(−βx)
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Laplace Approximation: Example

1. Write the negative log posterior U(x).

U(x) = −(α− 1) log x + βx

2. Compute the mode x̂ by setting dU(x)
dx = 0.

dU (x)
dx

= −α− 1
x

+ β = 0 ⇒ x̂ = α− 1
β

3. Compute the Hessian d2U(x)
dx2 in x = x̂.

d2 U(x)
dx2 = α− 1

x2

∣∣∣∣
x=x̂

= α− 1
(α− 1)2/β2 = β2

α− 1
4. Set up the Gaussian approximation of the posterior.

p(x | α, β) ≈ N
(

x | α− 1
β

,
α− 1

β2

)

Final considerations

� Benefits

1. It is relatively simple to implement and understand.

\ Limitations

1. It only captures local curvature around the mode θ̂.
2. It assumes the posterior is approximately Gaussian, which may not hold in practice

(e.g., multimodal posteriors).
3. It requires expensive computations:

• Finding the mode θ̂ via optimization (if not available in closed form).
• Computing and inverting the Hessian H to get the covariance (at least cubic

in the number of parameters).
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ñ In practice

1. Laplace approximation is useful if a “pre-trained” model is available (e.g., a neural
network shared on Huggingface) and we want to perform Bayesian inference around
the learned parameters.

2. The Hessian is often approximated with a diagonal or block-diagonal matrix to
reduce computational costs.
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