🗓️ Week 02 - Bayesian linear regression

Author
Affiliation

EURECOM

In this second week, we cover Bayesian Linear Regression: applying Bayesian inference to linear models for regression. We will introduce likelihoods and priors, derive posterior updates for conjugate models, discuss predictive distributions, and address model selection and uncertainty with practical examples and exercises.

🖥️ Lecture Slides

📝 Lecture Notes (PDF)

📝 Exercises

📙 References

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press. http://probml.github.io/book1
Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT Press. http://probml.github.io/book2