🗓️ Week 02 - Bayesian linear regression
In this second week, we cover Bayesian Linear Regression: applying Bayesian inference to linear models for regression. We will introduce likelihoods and priors, derive posterior updates for conjugate models, discuss predictive distributions, and address model selection and uncertainty with practical examples and exercises.
🖥️ Lecture Slides
📝 Lecture Notes (PDF)
📝 Exercises
📚 Recommended Reading
📙 References
Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press. http://probml.github.io/book1
Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT Press. http://probml.github.io/book2